
Protecting Critical Infrastructures

– Power Grid Case Study

Karthik Pattabiraman

Joint work with Flore Yuan, Peter Klemperer,

Zbigniew Kalbarczyk and Ravishankar Iyer

Motivation: Power Grid

 Large and complex infrastructure
 Multiple producers and consumers with varying needs/demands

 Critical for national security
 Many other essential services depend on power

 Local failures can cascade leading to massive blackouts
 Example: Northeastern blackout of August 2003

North-eastern blackout viewed from space NYC skyline during blackout

2 CCC Cross-layer Visioning Workshop

Unprotected Power Grid

 IEDs:

 Intelligent

Electronic Devices

• RTU: Remote

Terminal Unit

• Current Control

Systems’ OS:

• Windows NT

• Unix-like

• Internet/Intranet

connection (may or

may not be secure)

3

Fault-Models (IED)

Deployed in harsh or even adversarial conditions

- High temperatures, moisture or mechanical stress lead to failures

- May be subject to malicious tampering or physical attacks

- Fake data injection, data delay attacks

4

Fault-Models (RTU)

Deployed at base-station local to a sub-area

- Device Failures (temporary/permanent)

- Process failures (crash, hang or incorrect outputs)

- May be subject to buffer-overflow attacks and TOCTTOU attacks

5

Fault-Models (Front-end Processor/EMS)

Deployed at control center for an area (multiple sub-areas)

- Device Failures (temporary/permanent)

- Process failures (crash, hang or incorrect outputs)

- Attacks from malicious hosts (e.g., DoS, buffer overflows, data-replay attack)

- Unauthorized access by malicious insiders or external attackers
6 CCC Cross-layer Visioning Workshop

Constraints for Protection Techniques

 Low performance overheads

 Real-time data processing and decision making

 The “curse” of legacy

 Large installed s/w base often on antiquated h/w

 Low false-alarm rates

 Do not want to trigger recovery actions unnecessarily

 Prevention of error propagation

 Preemption of cascading failures

7 CCC Cross-layer Visioning Workshop

Protected Power Grid

8

Assertion

-Based

Checking

Assertion

-Based

Checking

Assertion

-Based

Checking

CCC Cross-layer Visioning Workshop

Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions

9 CCC Cross-layer Visioning Workshop

Assertion-based Checking: Overview

 Assertions/runtime checks specific to program

 Focus on protecting program‘s critical variables

 Based on static analysis of program source code

 Execute checks on special-purpose reconfigurable
hardware (RSE) in parallel with application

 Concurrent, low-latency detection of errors

 Generic interface to processor’s internal state

Static Detector

Module (SDM)

General-

purpose

Processor

R

S

E

10 CCC Cross-layer Visioning Workshop

Assertion-based Checking: Approach

11

 Critical Variable
Identification

 Errors in variables likely to
result in failures

 Assertion Derivation
 Based on dependencies of

critical variables

 Assertion Validation
 Formal methods to find

corner cases that escape

 Assertion Execution
 Execute assertions using

reconfigurable h/w or s/w

Identify critical variables

using profile data +

heuristics

Derive

assertions using static

analysis (compiler)

Implement assertions

in reconfigurable

hardware + software

Validate efficacy

of derived assertions

CCC Cross-layer Visioning Workshop

Assertion-based Checking: Advantages

12

 Only detect the errors that matter to application

 Many errors do not matter and detecting them violates safety

 Overheads can be tuned based on application’s requirements and

the constraints of the hardware platform

 Fully automated (no programmer intervention)

 Important for legacy code and for code evolution

 Prevent error-propagation (pre-emptive detection)

 Low detection latency due to hardware support

 Formal guarantees on error-containment and detection

CCC Cross-layer Visioning Workshop

Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions

13 CCC Cross-layer Visioning Workshop

Derivation: Crit. Var. Identification

14

 Critical Variable: Highly sensitive to program

errors that cause failure

 Variables that have a high dynamic use count (Fanout)

 Validated empirically using fault-injection experiments

P (Critical)

V

Z

A B C D E F G

Choosing 10 to 20 of the highest

Fanout variables in the program

can provide detection coverage of

85 - 95% for failure causing errors

- Pattabiraman et al. [PRDC ‘05]

U
X

High

Fanout

variable

Y

Program Fails !

Derivation: Algorithm

15

Extract backward slice of critical

variable

Specialize slice specific to control paths

Optimize slice to obtain checking

expression

Instrument program to track runtime

paths, execute corresponding checks

CCC Cross-layer Visioning Workshop

Derivation: Example

16

Critical

Original Code

Checking

expressionsif (path==1)

f2 = 2c – e;

if (a==0)

f2 = a + e;

if (a != 0)

if (f2==f)

then else

then

Declare Error in f

along path

then then

else

else else

Derived Checks

Path

tracking

b = a + c;

d = b – e;

f = d + b;

c = a – d;

b = d + e;

f = b + c;

if (a == 0)

Check(f);

then else

path=1 path=2

Rest of code

Error

CCC Cross-layer Visioning Workshop

Derivation: Experimental Results

17

 Added new sequence of compiler passes
 Implemented in LLVM optimizing compiler

 Performance Evaluation (Pentium 4)

 Benchmarks: Stanford programs, Olden suite

 Average performance overhead = 33 %

 Coverage Evaluation (Fault-injection)
 Detected 77 % of failure-causing errors across programs

 68 % of errors were detected before propagation

 Less than 3 % of errors detected were benign

Error Activated Detected Propagated Crash

CCC Cross-layer Visioning Workshop

Detection: H/W Implementation

Application source code + critical variables

Application code instrumented

with special CHK instructions

Path-tracking

state machines
Checking

Expressions

General-purpose

Processor

Static Detector Module

(SDM)

R

S

E

Regular compiler

Software

Enhanced Compiler (CVR algorithm)

Translation

to VHDL code

Hardware

18 CCC Cross-layer Visioning Workshop

Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions

19 CCC Cross-layer Visioning Workshop

Validation: SymPLFIED Framework

20

SymPLFIED

Framework

Assembly

Language Program

Enumeration of

failures due to errors

Input: Application code with or

without embedded assertions

Output: Understanding of

limitations of assertions

Machine

Model

Fault

Model

Detection

Model

Rewriting Logic (Maude)

CCC Cross-layer Visioning Workshop

Validation: Symbolic Execution

21

 Exhaustive
enumeration leads
to state space
explosion

 Represent all
error values in
program as an
abstract symbol

 Track propagation of
errors symbolically

 Abstraction may lead
to false-positives

{ x1, x2, …., err }

{ x1, x2,..xk }

{ x1, x2, …, 2}

{ x1, x2, …, N - 1}

{ x1, x2, …, N}

{ x1, x2, …, 1 }

{ x1, x2,..xk }

Completeness is important even at the cost of a few

false-positives

{ x1, x2, err, …., err }

CCC Cross-layer Visioning Workshop

Validation: Example

22

ori $2 $0 #1

read $1

mov $3, $1

ori $4 $0 #1

loop: setgt $5 $3 $4

beq $5 0 exit

mult $2 $2 $3

subi $3 $3 #1

beq $0 #0 loop

exit: prints "Factorial = "

print $2

halt

err

true => { N ! , (N ! / 2 !) , (N ! / 3 !) ….. 1}

($3 > $4) = true

Exit loop

($3 > $4) = false

Reenter loop and continue

false => err

CCC Cross-layer Visioning Workshop

Validation: Results Summary

23

 Tcas: Application Characteristics

 FAA mandated Aircraft collision avoidance system

 Rigorously verified protocol and implementation

 About 150 lines of C code = 1000 lines of assembly

 Ran SymPLFIED on a cluster of workstations (in parallel)

1

2

Found a fault causing a safety

violation within 5 minutes

1. Injected into a register holding

a function’s return value

2. Did not find the fault with

random fault-injection even

when run for 5x the time

CCC Cross-layer Visioning Workshop

Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions

24 CCC Cross-layer Visioning Workshop

Case Study: SyncroPhasor

Voltage, Phase,

Frequency Meter 1

Voltage, Phase,

Frequency Meter 2

Synchr-

onism

Check

Auto-reclosing SyncroPhasor Array

Circuit breaker

Transmission line A

Transmission line B

25 CCC Cross-layer Visioning Workshop

Case Study: Check Insertion
void checkSync(Meter meterA, Meter meterB, Breaker breaker)

{

int PhaseA = meterA.Input;

int PhaseB = meterB.Input;

int Difference = abs(PhaseB – PhaseA);

// Stuck-at-Fault: Difference = 180

if (Difference < 25) {

breaker.status = reclose;

Check(abs(meterB.Input – meterA.Input) < 25);

} else {

breaker.status = open;

Check(abs(meterB.Input – meterA.Input) >= 25);

}

Safety

violation !

Error detected

by check failing

26 CCC Cross-layer Visioning Workshop

Case Study: Error Propagation Example

27

read $1

mov $2, $1

read $1

mov $3 $1

sub $2 $2 $3

setgt $5 $2 #0

beq $5 #0 decision

mult $2 $2 #-1

ori $4 #24

decision : setgt $5 $2 $4

beq $5 0 open

prints “reclose”

open : prints “open”

halt

err
($3-$2 > 0) == false

Get absolute value

($3-$2 > 0) == true

Goto decision

($2 > 24) == false

($2 > 0) == true

Goto open

false => reclose

true => open

CCC Cross-layer Visioning Workshop

Case Study: Check Validation

28

read $1

mov $2, $1

mov $6 $2

read $1

mov $3 $1

mov $7 $3

sub $2 $2 $3

setgt $5 $2 #0

beq $5 #0 decision

mult $2 $2 #-1

ori $4 #25

decision : setgt $5 $2 $4

beq $5 0 open

prints “reclose”

open :

check(abs($7-$6)>=25)

prints “open”

halt

err

($2 > 25) == false

($2 > 25) == true

Goto open

false => detection

CCC Cross-layer Visioning Workshop

Case Study: Hardware Implementation

Schweitzer

SEL-421

relay

Nallatech DIME-2

FPGA with Xilinx

FPGA

Schweitzer SEL-

3351 data

aggregator

Syncro-

phasor

setup

29

Performance Overhead = 2 %

Area Overhead = 2.5 %

CCC Cross-layer Visioning Workshop

Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions

30 CCC Cross-layer Visioning Workshop

Conclusions

31

 Power-grid: Example of complex and critical

infrastructure with multiple constraints

 Range of devices from very small to large (Customizable)

 Prevalence of legacy code (Backward Compatible)

 Real-time processing requirements (Low overheads)

 Containment and isolation of errors (Formal guarantees)

 Example protection technique for power-grid:

Assertion-based Checking (ABC)

 Automatically derive assertions based on static analysis (CVR)

 Formally validate efficacy of checks (SymPLFIED)

 Implement using reconfigurable hardware (RSE)

CCC Cross-layer Visioning Workshop

Open Questions

 Do the lessons from the power-grid carry over to
other critical infrastructures, e.g., water system ?

 Can we develop a common characterization of the systems ?

 At what level should we apply protection techniques ?

 Hardware, Operating System, Middleware, Application

 What kind of guarantees do we need to provide ?

 Formal, probabilistic, qualitative, hand-waving ?

 How does reliability impact security in these systems ?

 Should we address both in a unified manner or separately ?

 Are the two goals in conflict or can they leverage one another ?

32 CCC Cross-layer Visioning Workshop

