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Motivation: Power Grid

 Large and complex infrastructure
 Multiple producers and consumers with varying needs/demands

 Critical for national security
 Many other essential services depend on power

 Local failures can cascade leading to massive blackouts
 Example: Northeastern blackout of August 2003

North-eastern blackout viewed from space NYC skyline during blackout
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Unprotected Power Grid

 IEDs: 

 Intelligent 

Electronic Devices

• RTU:  Remote 

Terminal Unit

• Current Control 

Systems’ OS:

• Windows NT

• Unix-like

• Internet/Intranet 

connection (may or 

may not be secure) 
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Fault-Models (IED)

Deployed in harsh or even adversarial conditions 

- High temperatures, moisture or mechanical stress lead to failures

- May be subject to malicious tampering or physical attacks

- Fake data injection, data delay attacks
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Fault-Models (RTU)

Deployed at base-station local to a sub-area

- Device Failures (temporary/permanent)

- Process failures (crash, hang or incorrect outputs)

- May be subject to buffer-overflow attacks and TOCTTOU attacks
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Fault-Models (Front-end Processor/EMS)

Deployed at control center for an area (multiple sub-areas)

- Device Failures (temporary/permanent)

- Process failures (crash, hang or incorrect outputs)

- Attacks from malicious hosts (e.g., DoS, buffer overflows, data-replay attack)

- Unauthorized access by malicious insiders or external attackers
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Constraints for Protection Techniques

 Low performance overheads

 Real-time data processing and decision making

 The “curse” of legacy

 Large installed s/w base often on antiquated h/w

 Low false-alarm rates

 Do not want to trigger recovery actions unnecessarily

 Prevention of error propagation

 Preemption of cascading failures
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Protected Power Grid
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Assertion

-Based 

Checking

Assertion

-Based 

Checking

Assertion

-Based 

Checking

CCC Cross-layer Visioning Workshop



Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions
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Assertion-based Checking: Overview

 Assertions/runtime checks specific to program

 Focus on protecting program‘s critical variables 

 Based on static analysis of program source code

 Execute checks on special-purpose reconfigurable 
hardware (RSE) in parallel with application 

 Concurrent, low-latency detection of errors

 Generic interface to processor’s internal state

Static Detector

Module (SDM)

General-

purpose

Processor

R

S

E
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Assertion-based Checking: Approach
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 Critical Variable 
Identification

 Errors in variables likely to 
result in failures

 Assertion Derivation
 Based on dependencies of 

critical variables

 Assertion Validation
 Formal methods to find 

corner cases that escape 

 Assertion Execution
 Execute assertions using 

reconfigurable h/w or s/w  

Identify critical variables 

using profile data + 

heuristics 

Derive

assertions using static 

analysis (compiler)

Implement assertions

in reconfigurable 

hardware + software

Validate efficacy

of derived assertions
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Assertion-based Checking: Advantages
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 Only detect the errors that matter to application

 Many errors do not matter and detecting them violates safety

 Overheads can be tuned based on application’s requirements and 

the constraints of the hardware platform

 Fully automated (no programmer intervention)

 Important for legacy code and for code evolution

 Prevent error-propagation (pre-emptive detection)

 Low detection latency due to hardware support

 Formal guarantees on error-containment and detection
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Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions
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Derivation: Crit. Var. Identification
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 Critical Variable: Highly sensitive to program 

errors that cause failure 

 Variables that have a high dynamic use count (Fanout)

 Validated empirically using fault-injection experiments

P (Critical)

V

Z

A B C D E F G

Choosing 10 to 20 of the highest 

Fanout variables in the program 

can provide detection coverage of 

85 - 95% for failure causing errors 

- Pattabiraman et al. [ PRDC ‘05]

U
X

High

Fanout

variable

Y

Program Fails !



Derivation: Algorithm
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Extract backward slice of critical 

variable

Specialize slice specific to control paths

Optimize slice to obtain checking 

expression

Instrument program to track runtime 

paths, execute corresponding checks
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Derivation: Example
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Critical

Original Code

Checking

expressionsif (path==1)

f2 = 2c – e;

if (a==0)

f2 = a + e;

if (a != 0)

if (f2==f)

then else

then

Declare Error in f 

along path

then then

else

else else

Derived Checks

Path 

tracking

b = a + c;

d = b – e;

f = d + b;

c = a – d;

b = d + e;

f = b + c;

if (a == 0)

Check( f );

then else

path=1 path=2

Rest of code

Error
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Derivation: Experimental Results
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 Added new sequence of compiler passes
 Implemented in LLVM optimizing compiler

 Performance Evaluation (Pentium 4)

 Benchmarks: Stanford programs, Olden suite

 Average performance overhead = 33 %

 Coverage Evaluation (Fault-injection)
 Detected 77 % of failure-causing errors across programs

 68 % of errors were detected before propagation

 Less than 3 % of errors detected were benign

Error Activated Detected Propagated Crash
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Detection: H/W Implementation

Application source code + critical variables

Application code instrumented

with special CHK instructions

Path-tracking

state machines
Checking

Expressions

General-purpose 

Processor

Static Detector Module 

(SDM)

R

S

E

Regular compiler

Software

Enhanced Compiler (CVR algorithm)

Translation     

to VHDL code

Hardware
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Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions
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Validation: SymPLFIED Framework
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SymPLFIED

Framework

Assembly 

Language Program

Enumeration of 

failures due to errors 

Input: Application code with or 

without embedded assertions

Output: Understanding of 

limitations of assertions

Machine

Model

Fault

Model

Detection 

Model

Rewriting Logic (Maude) 
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Validation: Symbolic Execution
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 Exhaustive 
enumeration leads 
to state space 
explosion

 Represent all 
error values in 
program as an 
abstract symbol

 Track propagation of 
errors symbolically

 Abstraction may lead 
to false-positives 

{ x1, x2, …., err }

{ x1, x2,..xk }

{ x1, x2, …, 2}

{ x1, x2, …, N - 1}

{ x1, x2, …, N}

{ x1, x2, …, 1 }

{ x1, x2,..xk }

Completeness is important even at the cost of a few 

false-positives

{ x1, x2, err, …., err }
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Validation: Example
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ori $2 $0 #1

read $1

mov $3, $1

ori $4 $0 #1

loop: setgt $5 $3 $4

beq $5 0 exit

mult $2 $2 $3

subi $3 $3 #1

beq $0 #0 loop

exit: prints "Factorial = "

print $2

halt

err

true => { N ! , (N  ! / 2 !) , (N  ! / 3 ! ) ….. 1}

($3 > $4) = true

Exit loop 

($3 > $4) = false

Reenter loop and continue

false => err
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Validation: Results Summary
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 Tcas: Application Characteristics

 FAA mandated Aircraft collision avoidance system

 Rigorously verified protocol and implementation

 About 150 lines of C code = 1000 lines of assembly

 Ran SymPLFIED on a cluster of workstations (in parallel)

1

2

Found a fault causing a safety 

violation within 5 minutes

1. Injected into a register holding 

a function’s return value 

2. Did not find the fault with 

random fault-injection even 

when run for 5x the time 
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Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions
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Case Study: SyncroPhasor

Voltage, Phase, 

Frequency Meter 1

Voltage, Phase, 

Frequency Meter 2

Synchr-

onism

Check

Auto-reclosing SyncroPhasor Array

Circuit breaker

Transmission line A

Transmission line B
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Case Study: Check Insertion
void checkSync(Meter meterA, Meter meterB, Breaker breaker) 

{

int PhaseA = meterA.Input;

int PhaseB = meterB.Input;

int Difference = abs( PhaseB – PhaseA );

// Stuck-at-Fault: Difference = 180

if (Difference < 25) {

breaker.status = reclose;

Check( abs(meterB.Input – meterA.Input) < 25 );

} else {

breaker.status = open;

Check( abs(meterB.Input – meterA.Input) >= 25 );

}      

Safety 

violation !

Error detected 

by check failing
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Case Study: Error Propagation Example
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read $1 

mov $2, $1

read $1 

mov $3 $1 

sub $2 $2 $3

setgt $5 $2 #0

beq $5 #0 decision

mult $2 $2 #-1

ori $4 #24

decision : setgt $5 $2 $4

beq $5 0  open 

prints “reclose”

open :      prints “open”

halt

err
( $3-$2 > 0 ) == false

Get absolute value

( $3-$2 > 0 ) == true

Goto decision

( $2 > 24 ) == false

( $2 > 0 ) == true

Goto open

false => reclose

true => open
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Case Study: Check Validation
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read $1 

mov $2, $1

mov $6 $2

read $1 

mov $3 $1 

mov $7 $3

sub $2 $2 $3

setgt $5 $2 #0

beq $5 #0 decision

mult $2 $2 #-1

ori $4 #25

decision :      setgt $5 $2 $4

beq $5 0  open 

prints “reclose”

open : 

check(abs($7-$6)>=25)

prints “open”

halt

err

( $2 > 25 ) == false

( $2 > 25 ) == true

Goto open

false => detection
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Case Study: Hardware Implementation

Schweitzer 

SEL-421 

relay

Nallatech DIME-2 

FPGA with Xilinx 

FPGA

Schweitzer SEL-

3351 data 

aggregator

Syncro-

phasor

setup 
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Performance Overhead = 2 %

Area Overhead = 2.5 %
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Talk Outline

 Background and Motivation

 Assertion-based Checking (ABC)

 Derivation of assertions (CVR Technique) [TDSC’09][IOLTS’07]

 Validation of assertions (SymPLFIED) [DSN’08 – best paper]

 Case Study: Application of ABC to power grid

 Conclusion and Open Questions
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Conclusions
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 Power-grid:  Example of complex and critical 

infrastructure with multiple constraints

 Range of devices from very small to large (Customizable)

 Prevalence of legacy code (Backward Compatible)

 Real-time processing requirements (Low overheads)

 Containment and isolation of errors (Formal guarantees)

 Example protection technique for power-grid: 

Assertion-based Checking (ABC)

 Automatically derive assertions based on static analysis (CVR)

 Formally validate efficacy of checks (SymPLFIED) 

 Implement using reconfigurable hardware (RSE)
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Open Questions

 Do the lessons from the power-grid carry over to 
other critical infrastructures, e.g., water system ? 

 Can we develop a common characterization of the systems ?

 At what level should we apply protection techniques ?

 Hardware, Operating System, Middleware, Application

 What kind of guarantees do we need to provide ? 

 Formal, probabilistic, qualitative, hand-waving ?

 How does reliability impact security in these systems ?

 Should we address both in a unified manner or separately ?

 Are the two goals in conflict or can they leverage one another ?
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