

September 11, 2009

Reliability Requirements for Automotive

Tony Reipold, Kevin Kemp, Claude Moughanni Freescale Semiconductor

Reliability Requirements for Automotive

- Market Characteristics
- Safety Standards
- Research Needs /Discussion Points

Market Characteristics

- Automotive reliability needs driven by
 - Consumer expectation: JD Power, Consumer Reports ...
 - Warranty / service / recall cost
 - Liability, litigation, regulatory
- Automotive electronics growth Competitive new features
 - Powertrain: Engine control, transmission, instrumentation
 - Chassis / safety: ABS, ESC, active suspension, airbag ...
 - Body electrical: Door, window, lock, alarms ...
 - Comfort / convenience: Climate control, memory seat ...
 - Energy efficiency: Hybrid, EV, electric steering (weight reduction) ...
 - Infotainment, telematics
 - Driver aid: Radar, night vision, lane departure, active cruise ...
 - Intelligent highway, autonomous vehicle …
- Risk averse
 - Long technology adoption cycles
- Operating Environment
 - Temperature (-40 to 175°C), moisture, vibration, EM noise
- Extreme Cost Sensitivity

Reliability Threats

- Device wear-out (hard fail or degradation)
- Manufacturing defects (test escapes)
- HW and SW design errors (verification escapes)
- Transient faults (alpha particles, cosmic rays, noise, EMI)
- Overstress failure (ESD, power surge, short circuit load)
- Parametric variability (performance marginality, increased failure susceptibility)
- Analog and sensor components as well as digital
- Over reaction to transient or correctable faults (unnecessary system shut down)
- Improper maintenance

Basic Concepts and Taxonomy of Dependable and Secure Computing A. Avizienis et. al., IEEE Trans on Dependable and Secure Computing, 2004

Safety Systems versus Safety-Critical Systems

		Functional safety		
		Non-safety critical	Safety-critical	
		[failure \Rightarrow no imm. danger]	[failure \Rightarrow immediate danger]	
Automotive Safety Systems	Active Safety [avoid accident]	Braking Assistant	ESP	
	Passive Safety [survive accident]	Safety Belt Pretensioner	Airbag	
Non-Safety Systems		Lighting	Electronic Throttle Control	

⇒ Functional Safety is a property rather than an application domain

- ⇒ many automotive systems require this property
- ⇒ differences in criticality and moment of activation

Safety Standards

IEC 61508

- General safety standard for E/E/PE systems
- First edition 2000
- Metrics:
 - Probability of dangerous failure per hour (PFH)
 - Safe Failure Fraction (SFF)
- 4 Safety Integrity Levels (SIL)
- Hardware redundancy in formulas (HFT)

	SIL 1	SIL 2	SIL 3
PFH [1/h]	<10 ⁻⁵	<10 ⁻⁶	<10 ⁻⁷
SFF	>=60%	>=90%	>=99%

Note: specialised table for typical automotive application with HFT=0

ISO 26262

- Adaption of IEC 61508 for the automotive industry
- First edition emerging now
- Metrics:
 - Probability of violation of safety goals (PFH)
 - Single Point Fault Metric (SPFM)
 - Latent Fault Metric (LFM)
- 4 Automotive SILs (ASIL)

Hardware modeling	radyndan	ୢ୵ୠ୲ୄଽୄୄ୷ୣ	CAUSAL D
PFH [1/h]	<10 ⁻⁷ (recom.)	<10 ⁻⁷	<10 ⁻⁸
SPFM	>90%	>97%	>99%
LFM	>60%	>80%	>90%

Deriving MCU Safety Level Measures

Self test measures

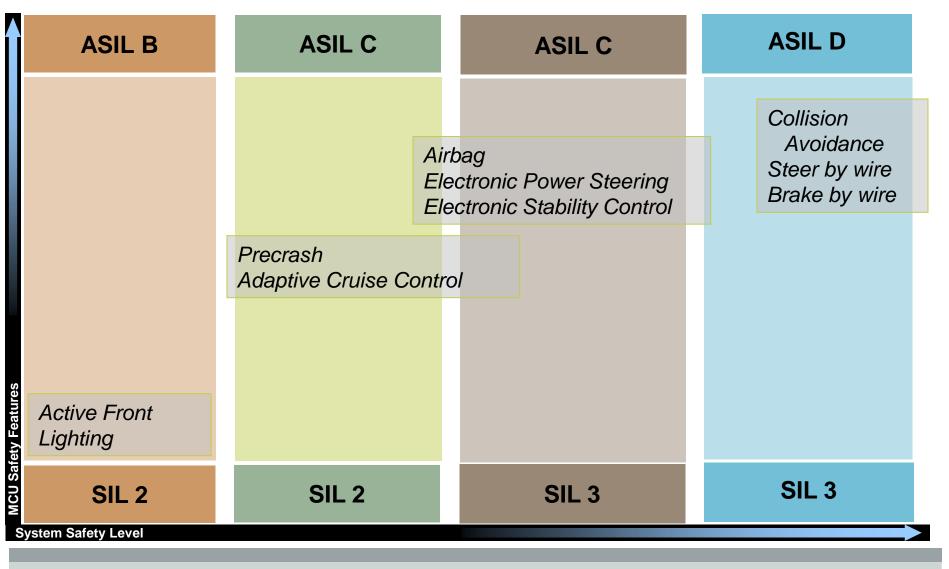
- Ensure that the device is free from dormant faults
- Core self-test
- Device self-test


Error detection measures

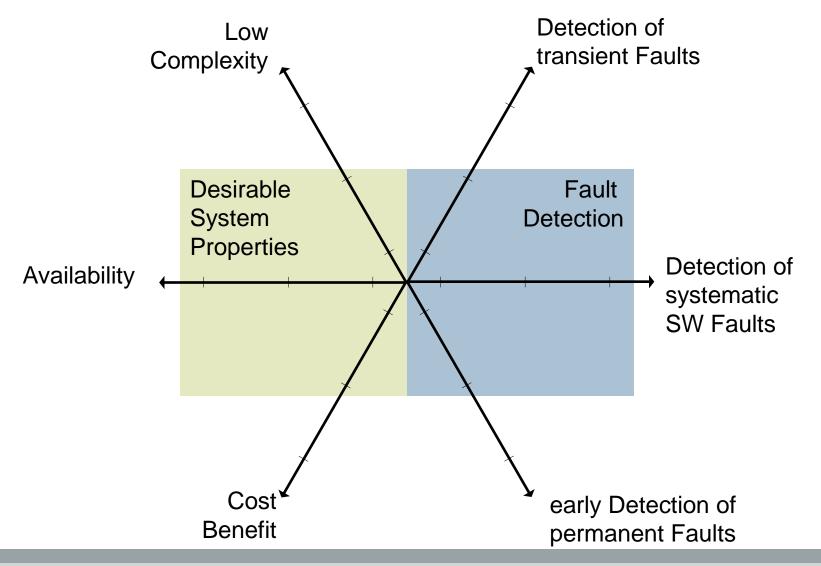
- Stop errors from propagating beyond component boundary
 - Error correction (compensation)
 - Shut down (fail-silent)
- · HW plausibility based
 - Illegal address/op-code detection, Supervisor & user modes, memory error detection, ECC, clock monitors, voltage supervision, watchdogs,
- HW redundancy based
 - redundant peripherals, dual-core

Development process measures

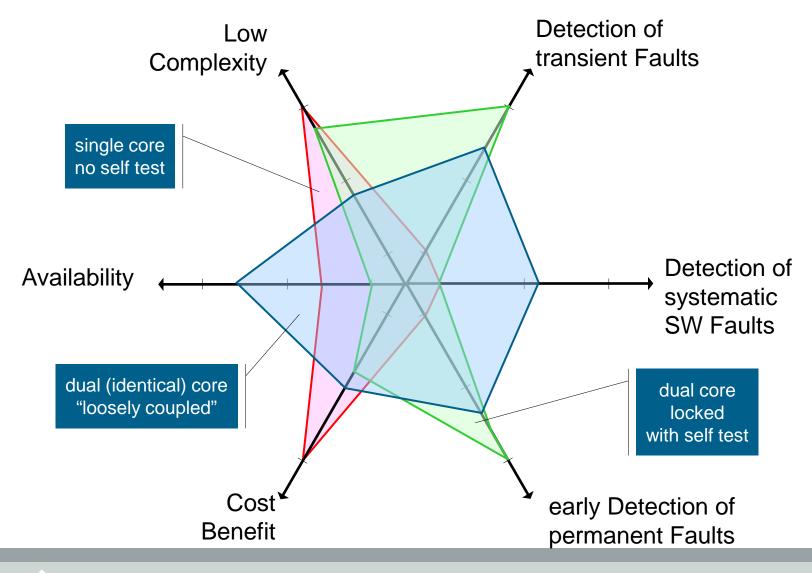
- Avoid systematic failures
- Follow IEC 61508 process requirements



Fault Tolerance/Resiliency Techniques


	Device	Circuit / uArch	System Arch	Firmware / Driver / OS	Application SW
Guardbanding / Uprating / Overdesign	х	х	x		
Fail-over machanisms (e.g ABS)					
Communication channel coding (ECC)		Low cost / very effective			
Memory Error Correction		low to med cost / very effective			
Self-checking digital circuits (Error correcting buses and logic) self- Checking and Fault-Tolerant Digital Design, Parag K. Lala; Academic Press, 2001					
Triple modular redundancy + voting (TMR)			Very high cost / very effective		
Hardware replicate / diversity + checker			Med to high cost / effective		
Software diversity + checker					High cost
On line BIST http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04700583		X (memory/logic)	x	x	
Checkpoint – test – recover (BulletProof Silicon - Austin/Bertacco) http://www.eecs.umich.edu/-taustin/papers/dtco-25-04-aust.pdf http://www.eecs.umich.edu/-taustin/papers/HPCA06-bullet.pdf		x		x	
Asymmetric reliability - control vs. data (ERSA – Mitra) http://selse3.selse.org/Papers/17_Bau_P.pdf			x		
Monitors / diagnostics (Clock source/quality monitors, open/short circuit tests, cpu tests, voltage/current monitors, multiple A2D test voltages)		Low cost / effective	x		
NoC w. redundancy + resilient routing			x		
On-chip sensors (thermal, NBTI, TDDB)	х			x	
Selective component hardening based on criticality (VGER - Seshia)	х				

Chassis / Safety Applications



Metrics for Fault Tolerance Mechanisms

Fault Tolerant Architectures

Automotive System Level Example

Implementation Abstraction	Example Application (for Illustration)			System level goals:
				Optimize total system resilience and cost
Application SW	Auto Drive Vehicle: Integrate all data sources and control direction and speed			Optimize component level resilience ar cost in context of a the system
				Compare alternate and innovative architectural solutions
Firmware / Driver / OS	Read road sensors	Read car radar	GPS, direction, speed, Etc	Use tools to enable accurate modeling, repeatable processes and faster time to
				market.Tools should cover system requirements
System / Interfaces	Communicate sense results	Communicate radar results		capture phase through product delivery
				Resilient system design requires
Board / Subsystem	Sensor to control logic	radar to control logic		cross layer and within layer communication of :
				Failure occurrence
Packaged IC / Sensors	Sensor with lens/package	radar with package		 Recovery implemented Probability of failure recurrence
				 Distance from lowest allowable safety critical degraded mode
Manufacturing / Device	Manufacture sensor	Manufacture radar x/r		

Research Needs / Discussion Points

- Requirements capture and architecture exploration methodology & tools
- New, low cost resilient architectures / methods
 - Apply to "mature" technologies to achieve very high reliability levels
- Software resiliency
 - Software (faults) are part of the problem
 - Software (may be) part of the solution
- Provable compliance (SIL / ASIL) of fault tolerant designs
 - At the system level
 - At each level in the system
 - Design, manufacturing, HW, SW, power supply, packaging, documentation...
 - Cross discipline resiliency models
- Commonalities with Aerospace (- rad hard, + low cost)
 - Life-critical applications
 - Conservative / risk-averse
 - Application follower (dynamics, navigation telematics,, autonomy ...)
- Communication and interfaces
 - Unambiguous system communication within a level and across levels
 - Optimized local communication overhead requirements (cost optimization)
 - Resilient interfaces

