

Commercial/Consumer Systems Brief-in

The Future is:

- Continued feature size scaling
- High variation
- Significant fault rates
- Slower V_{dd} scaling
- Slower clock rate scaling
- Burn-in less of an option
- Power becoming primary limit on integration

Trends

- Fabrication variation, aging, soft error rate per chip all getting worse with scaling
- Commodity processors incorporating more "point solution" reliability mechanisms with each generation
- Argument: time to stop applying band-aids and rethink the problem from scratch

T=0 Variation Increasing

Technology Outlook

High Volume Manufacturing	2008	2010	2012	2014	2016	2018	2020	2022
Technology Node (nm)	45	32	22	16	11	8	6	4
Integration Capacity (BT)	0	16	32	64	128	256	512	1024
Delay Scaling	>0.7 ~1?							
Energy Scaling	~0.5 >0.5							
Transistors	Planar 3G, FinFET							
Variability	High Extreme							
ILD	~3 towards 2							
RC Delay	1	1	1	1	1	1	1	1
Metal Layers	8-9	9 0.5 to 1 Layer per generation						

How Many Transistors Can I Build?

Thesis

- For commercial/consumer systems, resilience/reliability is the tool that will let us take advantage of smaller feature sizes
 - Tolerate increasing variation/errors without decreasing end-user reliability, product lifetime, confidence
 - Transform energy margins into information margins to reduce power consumption
 - Adapt redundancy and checks to needs of system, application, and user
 - Single-pixel errors in DVD playback better than running out of battery before end of movie
 - Single-digit errors in credit card payment worse than being told you don't have enough battery left

Example: Operate at Average-Case via Resilience (not Worst-Case)

Source: K. Bowman, et al., ISSCC, 2008.

Power vs. Throughput

Source: K. Bowman, et al., JSSC, 2009.

8

Strawman Resilient System

- Adaptive software diagnostics determine system state and aging
- Small set of hardware mechanisms to detect errors
- Reconfigure at coarse grain (ex: core)
 - Finer-grained reconfig. only where it's very cheap (e.g., cache line disable)
- Divide error analysis/recovery/reconfiguration between HW and SW
 - Tune system for error rate that maximizes power efficiency
 - Build cheapest set of HW mechanisms that allow that error rate
 - Push everything else into SW

Questions for the Group

- What is an appropriate overhead "goal" for each fab. generation? Can we hit 10-20%?
- What information can we provide to the OS, and how much will it cost?
- What can we do to make reliability "tunable" and to make commodity parts better components of systems in other domains?
- When does it not make sense to involve the entire system stack in handling a fault?
 - E.g., power/performance/error rate trade-offs
- How much help can we get/expect from applications?

