
Cross-Layer Reliability Metrics

Subteam Activities
Observations

Brainstorm with Whole Team
July 8, 2009

Agenda

• Subteam Members
• Subteam Timeline
• Problem Statement and Subteam Mission
• Why Cross-Layer Metrics?
• Vision for variable reliability at Runtime
• Call for better prediction (Kudva & Recchia

et. al.)
• Hard error behaviors (Schroeder et. al.)

Reliability Metrics Subteam
• Name (alphabetical order): affiliation (subteam activities focus)

• Carter, Nick: Intel (errors of all sorts)
• Dekel, Eliezer: IBM Haifa Research (system software)
• Kudva, Prabhakar: IBM Watson Research (prognostics)
• Recchia, Charles: Intel (prognostics)
• Seager, Mark: LLNL (HPC, accurate predictions is scale-out)
• Mitra, Subhasish: Stanford University (co-leader, variable reliability

of all sorts)
• Sanda, Pia: IBM Systems & Technology Group (co-leader, variable

reliability for soft errors)
• Schroeder, Bianca: Univ. of Toronto (errors of all sorts)
• Xenidis, Jimi: IBM Austin Research (runtime software)

Subteam Timeline
• June 25 subteam meeting – introductions & brainstorm
• July 2 subteam meeting – problem definition & mission

scoping – variable reliability whitepaper forming (draft
available)

• July 6 focus group meeting on prognostics whitepaper
forming (Kudva, Reccia, Mitra & Sanda)

• July 8 – today – Seek input / “cross-pollination” from
broader CCC Team

• Post workshop subteam meeting
– Incorporate broader team input into Whitepapers

• Whitepapers & Presentations completed and distributed

Problem & Subteam Mission
• Future systems will potentially combine many different components coming

from many different suppliers
• This significantly complicates how we estimate / quantify / design for the

overall reliability of a system.
• We need to describe the reliability of these systems, and the reliability (e.g.

data integrity performance) must be predicted, verified, and validated as a
function of the workloads performed.

• We need metrics to be able to characterize and classify data integrity in this
new paradigm of heterogeneous computing.

• Ultimately, we want the metrics to help enable the variable reliability to be
delivered as needed at runtime

• The context is not only the hardware, but the runtime software and
applications.

• We seek a holistic view across hardware components, system architecture,
operating systems and runtime software, and user applications.

• We will contain the scope of the study to hardware errors
but look for metrics to quantify their effects across the various layers.

Layers

HW Components: Adapters,
Accelerators, Processors

Reliability Run-Time Firmware

Host Operating System

Applications

Error rates are not “just” the sum of hardware components

They depend on the RAS functions including firmware implementations

They depend on what the operating system does

They depend on the applications running Reliability Metrics Need to
Cross Layers

Variable Reliability

HW Components: Adapters,
Accelerators, Processors

Reliability Run-Time Firmware

Host Operating System

Applications

Vision: Future Heterogeneous Systems will have Standard Interfaces for
Tunable Reliability

Interfaces will pass attributes to execute tunable reliability

Metrics provide the measures by which the System can quantitatively
assess and control its reliability based upon its components..

Reliability Metrics Need to
Be Passed Across Layers

Variable Reliability
• Example 1:

– Chip xyz is showing signs of wearout
– It switches a wear indicator bit to “on” (reliability metric)
– System middleware detects the xyz wear indicator bit has flipped to “on” and sends message

to console “XYZ running in degraded mode” and field repair action is initiated (reliability
metric is passed between component to host)

• Example 2:
– Chip xyz1 is showing signs of wearout
– It switches a wear indicator bit to “on” (reliability metric)
– System firmware fails xyz1 out to spare xyz2 and sends message to console “XYZ failed and

swapped to spare” and field repair action is initiated to replace spare (reliability metric is
passed between component to host)

• Example 3:
– Workload abc requires mainframe data integrity on accelerator efg but efg is a commodity

part
– Workload task carries a QoS bit (reliability metric) that indicates “mainframe reliability” and

runtime software launches duplicate tasks on duplicate accelerators (reliability metric is acted
upon by runtime software)

– Results are crosschecked to be correct and result is sent to host

Metrics for Accurate Error
Rate Prediction

Requirements for metrics

• Common language for system integration
requirements

• Measure both current and prognostic
reliability

• Common requirements for composition of
large scale systems, and smaller systems

• Correlation between system components
• Capture both SER and HER

Error Rate Dependencies

• Error rates (both current and prognostic)
for both components and system are
affected by
– Environment
– Configuration
– Utilization

Component Error Rate
• Define error rate as a range COMP_i ER = [min-max] for

components/hierarchies over:
– Configurations in which component is used within system
– Environment in which a component may be used
– How the workload uses the component (hit rate and line usage in

memory for example)

System integration
• EFF_ERCOMP_i = FUNCTION1 (ER COMP_i, CORRj

COMP_i, UTILCOMP_i)

• Such a function will be computed hierarchically where each node in
the hierarchy becomes a component at the next level
– ER is rated error rate of component i under certain conditions
– CORRj

COMP_i is the correlation variable that captures the relationship
between the error rate of component i and other components j in the
system

• for example, the data rate of an IO device connected to a bus may be limited
by data rate of bus

• DIMMs may be configured many different ways based on other components
in system

– UTILCOMP_i is a variable that captures the dependency of the error rate
on the workload

• ER can be defined as any one of SDC, Checkstops, performance
loss etc.

Prognostic error metrics
• Predict future error rate (system fragility) based on knowledge of

components
– Example: if spare (processor/redundant line) etc are already

used up, prognostic error rate is high
• Predictability of such an error rate and/or sensitivity of a component

– Will help pre-empt failure
– Identify critical components on the verge of failure AND whose failure

would cause system wide outages and/or SDCs
– Focus service requests requirements

A typical prognostic equation
• Prognostic System Error rate =

– ∑ FUNCTION2 (EFF_ERCOMP_i , CRITCOMP_i ,
UTILCOMP_i, FAIL/ENV_STATUSCOMP_i);

• Variable FAIL/ENV_STATUSCOMP_i is used to capture
the current state of fragility of component or hierarchy

Work to do
• In the context of some full systems, and diverse

application domains (HPC to consumer), define:
– 1. Define ∑j CORRj COMP_i , for each component/hierarchy i, sum

the correlation of error rate between component i and all other j
components in the system precisely

– 2. Define CRIT COMP_i , i.e., criticality of component i in the
system precisely

– 3. FAIL/ENV_STATUS COMP_i , potential of component error rate
to increase (either SER or HER based on current
failure/environmental conditions precisely.

– 4. Precise definition for UTILCOMP_i . This may be tricky based
on component type (processor, memory, IO, disk etc).

• Identify case study systems and evaluate these and
other required metrics

Reliability Metrics Study Group:
Hard Error Metrics

Bianca Schroeder

Computer Science Department
University of Toronto

Slides based on discussions in phone con-call
arranged by Pia and e-mail exchange with LANL folks.

2

• What is a hard error?
• A repeatable error, due to permanent hardware problem

• Why important?
• Growing component count => more errors in future systems
• Significant frequency: E.g. in DRAM an estimated 60% of

uncorrectable errors due to hard errors.

• Our question:
• What are the right metric(s) for hard errors?

Hard errors

3

• Good metrics should be quantities we can
measure & that aid in:
• Management of current systems

• Predict interrupt frequency apps see
• Predict component failures

• Planning of future systems
• Predict interrupt frequency of future systems
• Determine requirements for components in future

systems

Why do we need metrics?

4

• Frequency per time
• FIT = failures in time per billion hours
• Or at device level: FIT / Mbit

• Is FIT good enough?

The standard metric: FIT

5

• No, not all errors are created equal!
• Take into account impact:

1. Detected & corrected
2. Detected & uncorrectable => failure
3. Undetected => silent data corruption / crash

• No, because:
Measure of ``fragility’’ of system
Can be predictor of permanent component failure
1. is often easier to measure than 2. and 3.

Is FIT good enough?

Can we just focus
on 2. and 3.?

6

• No, error frequency depends on many factors:
• Operating conditions (temperature)
• Utilization / workload
• Age
• System configuration / interaction between components
• …. any many others

• So, which do we take into account?
• All possible factors => not practical
• Only the relevant ones => what are those?

• Don’t know, errors in the field not well understood …

Is FIT good enough?

Bianca Schroeder © July 097

Frequency of errors in today’s systems

• Example 1: [sigmetrics’09]
DRAM errors in the field

Sheet
Data

Field

• Example 2: [FAST’06,TOS’07]
HDD replacements in the field

N
um

be
r o

f C
Es

 /
ye

ar

A B C D E F

0
10

00
30

00

N/A

Hardware Platform

Correctable errors (CEs)

• Accelerated lab tests and vendor data sheets are not enough
• Need real field data!

Field

Lab tests

Bianca Schroeder © July 098

Effect of age?

Nominal lifetime – 5 years

• Theory:
Little effect during
nominal lifetime

• Practice: [FAST’06,sigmetrics’09]
Surprisingly early wear-out
Infant mortality no concern

HDD replacements

DRAM errors

Bianca Schroeder © July 099

Effect of temperature?
• Theory:

Effect known from lab
experiments

• Practice: [FAST’06,sigmetrics’09]
Unclear effect in the field

HDD
replacements

Time

Er
ro

r r
at

e

DRAM errors

Conclusion

• FIT alone is not enough
• Need to distinguish different error modes / impact of error.
• Take into account factors that impact FIT

• But what factors to include?
• Could include ALL possible factors

– Impractical
• Could include only relevant factors

– But what are those?

• Many open problems
• Keep in mind what goals we have for metrics.
• Need field data to guide the process.

