
Cross-Layer Resilience Challenges: Metrics and Optimization

(Invited Paper)

Subhasish Mitra Kevin Brelsford Pia N. Sanda
Robust Systems Group IBM Corporation

Department of EE and Department of CS Poughkeepsie, NY
Stanford University, Stanford, CA

ABSTRACT
With increasing sources of disturbances in the underlying

hardware, a key challenge in design of robust systems is to
meet user expectations at required cost. Cross-layer resilience
techniques, implemented across multiple layers of the system
stack and designed to work together, can help system
designers build effective robust systems at the desired cost
point. This paper brings to the forefront two major cross-layer
resilience challenges:

1. Quantification and validation of the effectiveness of a
cross-layer resilience approach to robust system design in
overcoming hardware reliability challenges.

2. Global optimization of a robust system design using
cross-layer resilience techniques.

I. INTRODUCTION
Most system designs, with the exception of a few such as

high-end mainframes and safety-critical systems, assume that
the underlying hardware will always produce correct outputs
during system operation; i.e., possibilities of incorrect outputs
due to hardware errors are not explicitly considered during
design of most systems. At advanced technology nodes,
hardware failure mechanisms that were largely benign in the
past are becoming visible at the system level [Borkar 05,
Kogge 08, Nassif 10]. Hence, robust systems must be designed
such that they meet user expectations despite rising levels of
disturbances in the underlying hardware.

Design of fault-tolerant systems, while non-trivial, is
achievable but expensive [Ando 03, Bernick 05, Meaney 05].
Hence, the most significant challenge is to achieve required
levels of robustness at very low power, performance, area, and
design and validation costs.

The following resilience techniques constitute major
components of a robust system that can overcome hardware
reliability challenges:

1. Circuit-level error correction.
2. Failure prediction / early indication of (possible) failure.
3. Error detection.
4. On-line self-test and diagnostics.
5. Recovery and adaptation.
One approach which can potentially enable design of cost-

effective robust systems is to use cross-layer resilience
techniques [Carter 10, DeHon 10] – i.e., one or more of the
above resilience techniques may be implemented across
various layers of the system stack – circuits, architecture,
runtime, and application – such that they work together to
achieve required reliability levels at low cost.

There can be a wide variety of possible implementations of
cross-layer resilience techniques. Here are three examples:

1. Error detection may be implemented at logic level, e.g.,
using duplication, parity and residue techniques, while error
recovery may be implemented at architectural and higher
layers of abstraction [Ando 03, Meaney 05, Spainhower 99].

2. The implementation of error detection may span
multiple layers of abstraction, e.g., combining circuit-level
timing error detection [Bowman 09, Ernst 03, Franco 94] with
logic-level parity and residue codes [Mitra 00], application-
specific checking [Huang 84, Pattabiraman 07] and software-
implemented checking [Oh 02a, 02b]. Depending on the target
application, the price paid for resilience may be further
reduced by combining hardware-level resilience techniques
with error-resilience characteristics of target algorithms and
intelligent software optimizations [Leem 10].

3. Circuit-level error correction techniques, e.g., flip-flop-
level Built-In Soft Error Resilience (BISER) or DICE [Calin
96, Mitra 05, Zhang 06], may be used to correct radiation-
induced soft (transient) errors. Circuit failure prediction (to
provide early indication of impending circuit failures)
[Agarwal 07, Mitra 08, Li 09a], enabled by on-line self-test
and diagnostics [Inoue 08, Li 08, 10], may be used to
overcome reliability challenges related to transistor aging and
gate-oxide early-life failures. Such on-line self-test and
diagnostics may be implemented in hardware and orchestrated
using software layers [Li 09b]. Adaptation and recovery may
span multiple abstraction layers [Mintarno 10].

A cross-layer resilience approach, while attractive,
introduces its own set of challenges. This paper focuses on
major challenges that must be addressed for success of this
approach to robust system design:

1. How do we quantify and validate that a system designed
using a cross-layer resilience approach “truly” achieves
required levels of reliability?

2. How do we optimize an overall system design using
cross-layer resilience techniques and how do we quantify cost-
benefit trade-offs at various abstraction layers?

3. While there has been a lot of focus on resilience in
processors, future efforts must focus on cross-layer resilience
techniques for heterogeneous System-on-Chips (SoCs) with a
wide variety of components (processors, accelerators, signal
processing engines, FPGAs, and uncore components such as
on-chip networks, and memory and I/O controllers).

This paper focuses on the first two challenges. The third
challenge related to cross-layer resilience of SoCs is addressed
in [Carter 10].

II. METRICS AND VALIDATION
For a given set of resilience techniques, its effectiveness in

achieving desired system-level reliability must be evaluated
[Muller 10], and associated costs, such as system-level power
and performance costs, must be quantified. High-level metrics
for reliable (dependable) systems, e.g., reliability, availability,
data integrity, mean time to failure, mean time to repair (and
several others including performability and maintainability),
exist in the fault-tolerant computing literature and have been
used for quantifying the benefits of reliable systems [Siewiorek
98]. With cross-layer resilience, such high-level metrics alone
may not be sufficient. This is because there is a big gap
between such system-level metrics and transistor- or
interconnect-level failure sources. (This is somewhat similar to
trying to quantify, for example, system-level performance of a
multi-core system using SPICE or RTL simulations – this
approach suffers from major scalability challenges). While
earlier publications addressed some of these issues in the
context of hierarchical system-level dependability analysis,
e.g., [Goswami 97], systematic development of metrics and
abstractions that capture cross-layer aspects of resilience is
necessary.

For example, consider the reliability metric. The reliability
of a system at time t is the probability that the system produces
correct outputs up to time t (assuming it produces correct
outputs at time 0). In the context of cross-layer resilience, this
definition introduces several challenges related to the definition
of system boundaries and the levels of abstraction at which
various resilience techniques are implemented.

For a concrete example, consider the reliability metric in
the context of radiation-induced soft errors in flip-flops.
Assume that flip-flop-level soft error rates are known and, for
simplicity, assume that all flip-flops have the same soft error
rate. To estimate the system-level reliability metric, we also
need to quantify the conditional probability that the system
produces “correct” outputs given that a soft error has occurred.

For resilience techniques implemented entirely in hardware,
i.e., with no software support (e.g., using self-correcting flip-
flops such as BISER [Mitra 05, Zhang 06]), quantification of
this probability is manageable using techniques such as [Sanda
08, Seshia 07]. (This is a non-trivial task since there are several
challenges related to the scalability and accuracy of these
techniques). However, for cross-layer resilience solutions,
quantification of this probability becomes tricky. Next, we
illustrate this fact using two examples.

Example 1

Consider a cross-layer resilience approach where error
detection is implemented entirely in hardware while error
recovery is implemented in software. In that case, any chip-
level analysis technique must separately report situations where
incorrect outputs are produced by the chip but the
corresponding errors are detected by the implemented error
detection schemes in hardware. We refer to these cases as
detected errors. (For some incorrect outputs, errors will be
detected. However, for some other incorrect outputs, the
corresponding errors may not be detected depending on the
coverage of implemented error detection techniques. Chip-level
analysis techniques must distinguish between these two cases).
Situations of detected errors will initiate error recovery. (Since

error detection is implemented entirely in hardware, recovery
may not be initiated for any situation in which incorrect output
is produced but the corresponding error is not detected).
However, simply reporting cases of detected errors alone is not
enough. From full system perspective, it is also important that
the recovery techniques (implemented in software) successfully
recover the system from these detected errors. For that purpose,
other related information must also be reported. Examples
include error detection latency (the amount of time elapsed
between the occurrence of an error and detection of that error),
I/O activities during the time elapsed between the occurrence
of an error and its detection, and information about whether the
system was executing application vs. operating system code
during the appearance / detection of the error.

Depending on error sources and associated error rates, very
frequent error recovery can impose system-level performance
overheads (e.g., discussions in [Bowman 09]). Hence, low-
level error rate information may also be required by high-level
analysis techniques to estimate overall system performance
overheads of implemented resilience techniques.

Example 2

In this example of cross-layer resilience, error detection is
implemented at a higher abstraction layer. Consider a packet-
processing chip targeting networking applications which does
not contain any hardware that checks for errors. Upon error
injection simulations, erroneous packets will be observed at the
chip outputs when compared to fault-free simulation. Without
knowledge of protocol-level error detection (e.g., detection of
incorrect packet content because of specific encoding of packet
data, detection of incorrect packet sequences), these erroneous
packets may be pessimistically classified as “incorrect
outputs.” However, in reality, many of the packet errors may be
detected and packets may be retransmitted successfully. Simple
assumptions about detectability of all errors that result in
incorrect packets, without knowledge of actual hardware
design, system configuration or protocol, aren’t sufficient
either and may lead to optimistic reliability estimation.

As illustrated by the above examples, with cross-layer

resilience, simply evaluating error rates at low levels of the
system stack alone may not give useful information required to
decide whether an overall system meets the reliability goals of
the target application. In addition, metrics and abstractions used
for evaluating overall system resilience may also depend on the
nature of failure sources, e.g., temporary vs. so-called hard (or
non-temporary) failures. For example, depending on the
application, one may need to consider situations leading to
occurrences of temporary errors on a piece of hardware
containing a hard failure, and evaluate their effects on system
data integrity. Such situations have been considered in the past
in the context of Totally Self-Checking (TSC) circuits
[McCluskey 90, Siewiorek 98]. A detailed discussion of such
dependencies is beyond the scope of this paper.

Based on the above discussions, three related challenges for
cross-layer resilience are:

1. Statistical validation and related metrics: There is a
need for tools and layer-wise abstractions that can help
estimate overall system-level statistical metrics, e.g., reliability
and availability, and validate claims about such system-level

metrics. Such estimation requires tight confidence intervals.
Hence, smart estimation techniques are required for statistically
significant results without explosion in execution times of
estimation, e.g., techniques based on rare event sampling
methods. Recently, rare-event sampling has been used for
quantifying circuit-level process variations [Singhee 07].

It may also be desirable to report “worst situations” of error
propagation through the system stack (defining such “worst
error situations” can be challenging), and worst execution
sequences that can produce such worst situations. Such a worst-
case analysis may be required for designs targeting a broad
spectrum of applications with varying reliability requirements.
This is because the vulnerability of a system to hardware
failures strongly depends on executed application, e.g.,
emerging Recognition, Mining and Synthesis (RMS)
workloads may have some degree of inherent resilience to
errors [Leem 10] while others may not.

For complex SoCs integrating intellectual-property (IP)
blocks from multiple sources, additional complications may be
introduced due to possible unavailability of detailed hardware
descriptions for intellectual property reasons. For example,
widely-used error injection techniques often rely on hardware
design descriptions for simulation purposes. In the absence of
such design descriptions, the applicability of error injection and
the accuracy of obtained results can be questionable.

2. Verification of resilience techniques: It is imperative to
verify that resilience techniques correctly perform their tasks
under all possible system operation scenarios. Here are a few
examples that may be relevant in this context:

(a) Given a set of sequential elements (latches or flip-flops),
is the system “truly” protected from errors in those elements?
While it may be fairly straightforward to answer this question
with circuit-level resilience techniques, Examples 1 and 2,
discussed previously, illustrate how this problem can get
complicated with cross-layer resilience techniques.

(b) A simple yes / no answer to question (a) may not be
sufficient. Designers may be interested in knowing “how often”
and “under what scenarios” a system isn’t protected from errors
in a given set of sequential elements. For example, as shown in
[Zhang 06, Seshia 07] and in several other publications, not all
flip-flops are equally important in reducing the overall soft
error rate of a given design (even if every flip-flop has the same
raw soft error rate). Error injection simulations on an Alpha-
like microprocessor show that the chip-level soft error rate may
be improved by 10 times (vs. a design with no protection) by
protecting close to 50% of all flip-flops from soft errors [Zhang
06]. Such analysis requires information about the fraction of
overall soft error rate contributed by each flip-flop.

(c) Given a set of error detection techniques, does the
system “properly” recover from erroneous states under all
scenarios? Error recovery techniques implemented entirely in
hardware may be manageable, while error recovery with
firmware or higher-level support (e.g., application-level
checkpointing) can significantly complicate this problem.

(d) For systems with built in self-tuning and adaptation in
the presence of early-life failures and transistor aging (e.g., [Li
09a, Mintarno 10]), how do we verify that the system operates
at optimal power-performance-reliability points throughout
lifetime? A related issue is the error rate verification problem:
how do we ensure “correct” operating points (e.g., voltage,

frequency) of a system over lifetime such that hardware-
induced errors, together with cross-layer resilience techniques
to mitigate them, do not compromise overall system energy
efficiency (e.g., discussions on this topic in [Bowman 09]).

(e) For large-scale heterogeneous systems, e.g., cloud
computing environments consisting of a mix of heterogeneous
computing hardware with diverse reliability specifications,
what are the effects of scheduling and workload transitions
across servers on overall application-level resilience? The
higher layers of the system stack must account for this
variability in order to ensure consistent reliability to end users.

3. Reliability grades: There is an emerging need for
“grading” a system with respect to system-level metrics such as
reliability and data integrity. In fact, the required reliability
grade of a system (or a sub-system) may vary dynamically
depending on the workload. For certain domains, e.g., scientific
computing or aerospace, such grades exist. However, it is not
clear how to systematically generalize this concept and take
advantage of it for low-cost resilience. This aspect will be
discussed more in the context of optimization of cross-layer
resilience (Sec. III).

III. OPTIMIZATION
Error resilience must be an essential component of overall

system design optimization. This is because most designs are
power- and performance-constrained. Arbitrary insertion of
resilience techniques can violate such constraints. As shown in
this section, cross-layer resilience techniques can result in
better designs (cost-wise) with proper optimization. Hence,
optimization of cross-layer resilience techniques is a major
challenge for future systems.

We demonstrate this point using a simple yet illustrative
example: how to choose techniques for protecting a given set of
flip-flops in a design from radiation-induced soft errors
affecting the flip-flops? While this particular example focuses
on optimization across circuit- and logic-levels, more
opportunities and challenges exist for optimization across other
layers of the system stack including the application.

As discussed extensively in the literature on soft errors,
(unprotected) flip-flops can be significant contributors to
overall system soft error rates in sub-45nm technologies. At the
circuit level, special soft-error-resilient flip-flop designs, e.g.,
BISER [Mitra 05, Zhang 06], DICE [Calin 96], LEAP [Lee
10], may be used to minimize chip-level soft error rates. For
example, BISER, an acronym for Built-In Soft Error Resilience,
modifies flip-flop designs such that soft errors affecting flip-
flops can be self-corrected. However, such flip-flop designs
require additional transistors with increased power, area and
delay.

At a higher level of design abstraction, logic-level error
detection techniques may be used for soft error resilience.
Examples include parity techniques with a variety of
constraints on logic sharing [Mitra 00], residue checks for
arithmetic units, assertion checking (using design-level
properties or logic implications [Nepal 08]), and algorithm-
specific error detection techniques (e.g., [Huang 84]).

These circuit- and logic-level solutions span a wide
spectrum of cost vs. error resilience trade-offs. Hence, a major
challenge is to identify the “optimized” solution for a given

design to achieve maximized resilience at minimized cost. For
example, consider the following optimization problem:

Given a design and a set of flip-flops (out of all flip-flops in
the given design) to be protected from soft errors, identify the
subset of flip-flops (from the given set) to be protected using
BISER. The remaining flip-flops from the given set will be
protected using a single parity bit. The objective is to minimize
associated system-level costs (power, delay and area).

The above problem assumes the existence of techniques,
e.g., [Sanda 08, Seshia 07], for identifying the set of flip-flops
that need to be protected from soft errors.

One way of protecting the design is to replace all flip-flops
from the given set using BISER flip-flops (Fig. 3.1a). (Here,
BISER is used for illustration purposes. One can use other soft-
error-resilient flip-flops). As discussed earlier, a BISER flip-
flop incurs additional costs at the library cell level [Zhang 06].
Also, a single BISER flip-flop protects the corresponding flip-
flop in the original design (and no other flip-flop). However,
BISER does not require error signal routing or error recovery
because soft errors are corrected at the flip-flop level.

In contrast, a parity technique can protect multiple flip-
flops from soft errors using a single parity bit (the probability
of multiple flip-flops getting simultaneously affected by soft
errors is very small). Figure 3.1b shows a parity technique
where all flip-flops from the given set are protected using a
single parity bit. This technique introduces additional parity
prediction and parity checking logic (for detailed descriptions
of parity prediction and parity checking for arbitrary logic
circuits, the reader is referred to [Mitra 00]). Since we are
interested in flip-flop soft error protection only, we do not
require logic sharing constraints (unlike the case when

combinational logic error protection is required). Since parity is
an error detection technique, error signal routing is required
and recovery must be initiated using hardware (e.g.,
instruction-level retry [Meaney 05]) or software techniques.

Given the trade-offs between BISER and parity, as
discussed above, a third option is to protect a subset of flip-
flops from the given set using BISER and the rest of the flip-
flops (from the given set) using a single parity bit (more
complex examples can be created using multiple parity bits).
This is shown in Fig. 3.1c. The question is: which subset from
the given set should be protected using BISER (the remaining
flip-flops from the given set will be protected using a single
parity bit) such that the associated system-level power,
performance and area costs are minimized ?

For this problem, several scenarios are possible:
1. There is a single best solution, BISER or single-bit

parity, irrespective of the design or the given set of flip-flops to
be protected (similar to Figs. 3.1a or 3.1b).

2. Given a design, there is a single best solution (BISER or
single-bit parity) irrespective of the set of flip-flops to be
protected (similar to Figs. 3.1a or 3.1b).

3. Given a design and the set of flip-flops to be protected,
there is a single best solution such that all flip-flops from the
given set are protected entirely using BISER or single-bit parity
(i.e., there is no need for combining the two techniques)
(similar to Figs. 3.1a or 3.1b).

4. Depending on the design and the given set of flip-flops to
be protected, a subset of these flip-flops need to be protected
using BISER and the remaining ones using a single parity bit
(similar to Fig. 3.1c).

Figure 3.1. (a) Design with a given set of flip-flops (with outputs q1, …, qk) protected from soft errors using BISER. Remaining flip-

flops (with outputs qk+1, …, qs) not protected. (b) Same design as Fig. 3.1a. Flip-flops (with outputs q1, …, qk) protected using a
single parity bit. Please note additional combinational logic output (Parity), additional flip-flop (output p) and additional parity checker.

(c) Design in Fig. 3.1a with a subset (flip-flops with outputs q1, …, qh) from the given set of flip-flops protected using a single parity bit

(flip-flop qh not shown in the figure). Remaining flip-flops (with outputs qh+1, …, qk) from the given set protected using BISER.

CK

D

Comb.
logic

Y1, …, Ys

D

D

q1

qk

qs

CK

D

D

D

q1

qk

qs

D p
Comb.
logic

Parity =

Y1 ⊕ …⊕

Yk

Parity
checker

logic

Error = q1⊕

…⊕ qk ⊕ p

CK

D

D

D

q1

qk

qs

D p
Comb.
logic

Parity =

Y1 ⊕ …⊕

Yh

Parity
checker

logic

Error = q1⊕

…⊕ qh ⊕ p
(a) (b) (c)

Y1, …, Ys Y1, …, Ys
qh

For the first scenario, we do not need optimization. For the
second and third scenarios, we can simply generate two
versions of the design, one with BISER (Fig. 3.1a) and the
other using a single parity bit (Fig. 3.1b), and then choose the
lowest-cost solution. Scenario 4 requires optimization. Next, in
Fig. 3.2, we present simulation results on an actual design to
demonstrate that we actually encounter Scenario 4.

Figure 3.2 shows synthesis results (using Synopsys Design
Compiler and 45nm Nangate OpenCell library) for the
SimpleSPI design from http://www.opencores.org. Reported
power estimates were correlated with power numbers extracted
from layout. We did not target array-structured register file in
the design for soft error protection. For designs using BISER,
the area and power costs of a BISER flip-flop are assumed to
be 2.3 times that of the corresponding unprotected flip-flop
(with minimal delay impact). The power cost is similar to
[Zhang 06] and we assumed pessimistic area cost (unlike
[Zhang 06] which reuses scan test and debug resources).

In Fig. 3.2, we present results from two sets of experiments:
Experiment Set 1: 50% of all flip-flops are randomly

chosen to form the given set of flip-flops to be protected from
soft errors. Figures 3.2a-c show power penalties obtained from
synthesis results for three randomly chosen sets of flip-flops.

Experiment Set 2: Similar to Experiment Set 1 except that
90% of all flip-flops are randomly chosen to form the given set
of flip-flops to be protected from soft errors (Figs. 3.2d-f).

In the graphs in Fig. 3.2, each point represents a design
where a certain subset of flip-flops (with cardinality indicated
by its x-axis value) is randomly chosen from the given set of
flip-flops to be protected. This subset is protected using a

single parity bit and the remaining flip-flops from the given set
are protected using BISER. For each case, it is clear that the
best design (i.e., with smallest power penalty) uses a mix of
BISER and single-bit parity demonstrating the effectiveness of
cross-layer resilience and the need for optimization across
multiple abstraction layers. All designs in Fig. 3.2 were
synthesized to achieve clock frequency of 1 GHz. For single-bit
parity, the error signal was routed to a primary output and no
on-chip recovery unit was used. Area results obtained from
synthesis also show similar trends (as in Fig 3.2).

Additional opportunities exist for application-aware
optimization of resilience. In Sec. II, we had a short discussion
on reliability grades. With dynamically changing reliability
grades, it may be possible to “dial” reliability vs. costs on-the-
fly. However, this requires dynamic reliability management
across multiple abstraction layers that can turn resilience
features (e.g., error checking) on / off according to application
demands trading off power / performance vs. reliability.

Here is a concrete example of such application-aware
optimization to reduce overall power impact of resilience
techniques. BISER can be configured, during system operation,
to operate in one of two modes – an error resilient mode in
which BISER protection is turned on, and an economy mode in
which BISER protection is turned off. Such configurability
can be practically implemented in hardware and may be
activated with software orchestration [Zhang 06]. It can
minimize system-level power cost of BISER by turning on the
error-resilient mode only for critical computation. However,
information flow across abstraction layers to utilize such
configurability during system operation is an open question.

Figure 3.2. Synthesis results demonstrating the effectiveness of cross-layer resilience techniques and the need for optimization of

resilience techniques across multiple abstraction layers. (a)-(c): 50% of all flip-flops to be protected from soft errors. (d)-(f): 90% of all
flip-flops to be protected from soft errors. For each graph, the 0% (100%) point on the X-axis corresponds to a design where all flip-
flops are protected using BISER (a single parity bit). As shown in all graphs, the best design obtained from synthesis (i.e., the one

with lowest power penalty) contains a mix of BISER and single-bit parity.

(c)

(d) (e) (f)

(a) (b) (c)

Another opportunity for optimization arises from possible
reuse of resilience features for other Design for Excellence
(DFX) activities such as Design for Testability (DFT), Design
for post-silicon Validation and debug (DFV/DFD) and Design
for Yield (DFY). For example, the area impact of BISER can
be significantly reduced by reusing on-chip scan resources for
post-silicon validation and testing [Mitra 05, Zhang 06].

IV. CONCLUSION
Future robust systems must accept the fact that the

underlying hardware will be imperfect, and implement special
techniques to ensure resilience to hardware imperfections. The
biggest challenge in this context is to implement resilience at
lowest cost. Cross-layer resilience techniques can potentially
enable low-cost robust systems. As discussed in this paper,
challenges related to metrics, validation and optimization of
cross-layer resilience must be overcome for such a system
design approach to be successful.

ACKNOWLEDGMENT
This material is based upon work supported by the

National Science Foundation under Grant No. 0637190 to the
Computing Research Association. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the CRA and NSF. Thanks to Lori Bechtold, Nicholas
Carter, John Daly, Andre′ DeHon, Eliezer Dekel, Prabhakar
Kudva, Jim Van Oosten, Charles Recchia, Bianca Schroeder,
Mark Seager, Gary Swift and Jimi Xenidis for their inputs.

REFERENCES
[Agarwal 07] Agarwal, M., et al., “Circuit Failure Prediction and Its

Application to Transistor Aging,” Proc. IEEE VLSI Test Symp., pp.
277-286, 2007.

[Ando 03] Ando, H., et al., “A 1.3-GHz Fifth-Generation SPARC64
Microprocessor”, IEEE Journal Solid-State Circuits, Vol. 38, Issue
11, pp. 1896-1905, Nov. 2003.

[Bowman 09] Bowman, K., et al., “Energy-Efficient and
Metastability-Immune Resilient Circuits for Dynamic Variation
Tolerance,” IEEE Journal Solid-State Circuits, Vol. 44, Issue 1,
pp. 49-63, Jan. 2009.

[Bernick 05] Bernick, D., et al., “Non-Stop Advanced Architecture,”
Proc. IEEE Intl. Conf. Dependable Systems and Networks, pp. 12-
21, 2005.

[Borkar 05] Borkar, S.Y., “Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor Variability
and Degradation,” IEEE Micro, pp. 10-16, Nov.-Dec. 2005.

[Calin 96] Calin, T., M. Nicolaidis, and R. Velaco, “Upset Hardened
Memory Design for Submicron CMOS Technology,” IEEE Trans.
Nucl. Sci., Vol. 43, No. 12, pp. 2874-2878, Dec. 1996.

[Carter 10] Carter, N.P., et al., “Design Techniques for Cross-Layer
Resilience,” Proc. Design Automation and Test in Europe, 2010.

[DeHon 10] DeHon, A., et al., “Vision for Cross-Layer Optimization
to Address the Dual Challenges of Energy and Reliability,” Proc.
Design Automation and Test in Europe, 2010.

[Ernst 03] Ernst, D., et al., “Razor: A Low-Power Pipeline based on
Circuit-level Timing Speculation,” Proc. IEEE Intl. Symp.
Microarchitecture, pp. 7-18, 2003.

[Franco 94] Franco, P., and E.J. McCluskey, “On-line Delay Testing
of Digital Circuits,” Proc. IEEE VLSI Test Symp., pp. 167-173,
1994.

[Goswami 97] Goswami, K.K., R.K. Iyer L. Young, “DEPEND: A
Simulation-Based Environment for System Level Dependability
Analysis,” IEEE Trans. Computers, Vol. 46, pp. 60-74, Jan. 1997.

[Huang 84] Huang, K.H., and J.A. Abraham, “Algorithm Based Fault
Tolerance for Matrix Operations,” IEEE Trans. Computers, Vol.
C-33, No. 6, pp. 518-528, June 1984.

[Inoue 08] Inoue, H., Y. Li and S. Mitra, “VAST: Virtualization-
Assisted Concurrent Autonomous Self-Test,” Proc. IEEE Intl. Test
Conf., 2008.

[Kogge 08] Kogge, P., et al., “Exascale Computing Study:
Technology Challenges in Achieving Exascale Systems,” 2008.

[Lee 10] Lee, H., et al., “LEAP: Layout Design through Error-Aware
Placement for Soft-Error Resilient Sequential Cell Design,” Proc.
IEEE Intl. Reliability Physics Symp., 2010.

[Leem 10] Leem, L., et al., “ERSA: Error Resilient System
Architecture for Probabilistic Applications,” Proc. Design
Automation and Test in Europe, 2010.

[Li 08] Li, Y., S. Makar and S. Mitra, “CASP: Concurrent
Autonomous Chip Self-Test using Stored Test Patterns,” Proc.
Design Automation and Test in Europe, pp. 885-890, 2008.

[Li 09a] Li, Y., et al., “Overcoming Early-Life Failure and Aging for
Robust Systems,” IEEE Design and Test of Computers, Nov.-Dec.
2009.

[Li 09b] Li, Y., O. Mutlu and S. Mitra, “Operating System
Scheduling for Efficient Online Self-Test in Robust Systems,”
Proc. IEEE/ACM Intl. Conf. Computer-Aided Design, 2009.

[Li 10] Li, Y., D.S. Gardner and S. Mitra, “Concurrent Autonomous
Self-Test for Uncore Components in SoCs,” Proc. IEEE VLSI Test
Symp., 2010.

[McCluskey 90] McCluskey, E.J., “Design Techniques for Testable
Embedded Error Checkers,” IEEE Computer, Vol. 23, No. 7, pp.
84-88, July 1990.

[Meaney 05] Meaney, P., et al., “IBM Z990 Soft Error Detection and
Recovery,” IEEE Trans. Device and Materials Reliability, Vol. 5,
Issue 3, pp. 419-427, Sept. 2005.

[Mintarno 10] Mintarno, E., “Optimized Self-Tuning for Circuit
Aging,” Proc. Design Automation and Test in Europe, 2010.

[Mitra 00] Mitra, S., and E.J. McCluskey, “Which Concurrent Error
Detection Schemes to Choose?” Proc. IEEE Intl. Test Conf., pp.
985-994, 2000.

[Mitra 05] Mitra, S., et al., “Robust System Design with Built-In Soft
Error Resilience,” IEEE Computer, Vol. 38, pp. 43-52, Feb. 2005.

[Mitra 08] Mitra, S., “Globally Optimized Robust Systems to
Overcome Scaled CMOS Reliability Challenges,” Proc. Design
Automation and Test in Europe, 2008.

[Muller 10] Muller, K.P., and P.N. Sanda, ”Soft Error Assessments
for Servers,” Proc. Intl. Reliability Physics Symp., 2010.

[Nassif 10] Nassif, S.R., et al., “A Resilience Roadmap,” Proc.
Design Automation and Test in Europe, 2010.

[Nepal 08] Nepal, K., et al., “Using Implications for Online Error
Detection,” Proc. IEEE Intl. Test Conf., 2008.

[Oh 02a] Oh, N., P.P. Shirvani and E.J. McCluskey, “Error Detection
by Duplicated Instructions in Super-Scalar Processors,” IEEE
Trans. Reliability, Vol. 51, Issue 1, pp. 63-75, March 2002.

[Oh 02b] Oh, N., S. Mitra and E.J. McCluskey, “ED4I: Error
Detection by Diverse Data and Duplicated Instructions” IEEE
Trans. Computers, Vol. 51, No. 2, pp. 180-199, Feb. 2002.

[Pattabiraman 07] Pattabiraman, K., et. al., “Automated Derivation of
Application-Aware Error Detectors using Static Analysis,” Proc.
IEEE Intl. Symp. On-line Testing, pp. 211-16, 2007.

[Sanda 08] Sanda, P.N., et al., “Soft Error Resilience of the IBM
POWER6 Processor,” IBM Journal Research and Development,
Vol 52, Number 3, 2008.

[Spainhower 99] Spainhower, L., and T.A. Gregg, “S/390 Parallel
Enterprise Server G5 Fault Tolerance,” IBM Journal Res. and
Dev., Vol. 43, pp. 863-873, Sept./Nov., 1999.

[Seshia 07] Seshia, S., W. Li and S. Mitra, “Verification Guided Soft
Error Resilience,” Proc. Design Automation and Test in Europe,
pp. 1442-1447, 2007.

[Siewiorek 98] Siewiorek, D.P., and R.S Swarz, Reliable Computer
Systems: Design and Evaluation, 1998.

[Singhee 07] Singhee, A., and R. A. Rutenbar, “Statistical Blockade:
A Novel Method for Very Fast Monte Carlo Simulation of Rare
Circuit Events, and its Application,” Proc. Design Automation and
Test in Europe, pp. 1379–1384, 2007.

[Zhang 06] Zhang, M., et al., “Sequential Element Design with Built-
In Soft Error Resilience,” IEEE Trans. VLSI, Vol. 14, Issue 12, pp.
1368-1378, Dec. 2006.

