
LARGE-SCALE SYSTEM RELIABILITY 
Sarah Michalak (LANL),  Dennis Abts (Google), Nathan DeBardeleben (LANL), Greg Bronevetsky (LLNL), John Daly 

(DoD), Armando Fox (Berkeley), Jon Stearley (SNL), David Walker (Princeton), Ravi Iyer (UIUC), Will Jones (Coastal 

Carolina Univ.) 

 

Large-scale systems are at a crossroads. As the feature sizes of electronics grow smaller and large systems grow to 

thousands of nodes and millions of cores, the probability that some system component will fail grows steadily. 

Today’s systems have already begun to suffer from this trend, with many systems featuring more than one failure 

per day, including both fail-stop failures and data corruptions (ex: a 100,000-node BlueGene/L supercomputer 

suffers from one data corruption every 3-4 hours). This has led many applications and systems to explicitly 

incorporate fault tolerance features into their code, trading off the cost of fault tolerance mechanisms such as 

checkpointing against the cost of failures. A major example is the decision by major system vendors to remove 

local disks from compute nodes, which improves hardware reliability by removing the least reliable system 

component, while making checkpointing significantly more expensive (~30 min on a typical large system). 

 

Looking into the future, as large-scale systems grow even more complex and include increasing component counts, 

we anticipate a crisis of reliability where the underlying hardware will become too unreliable to provide useful 

service. As such, managing reliability at the level of individual components, entire systems and applications must 

become a key pillar of large-scale system research and development. Since traditional reliability research has 

primarily focused on preserving the abstraction of perfect reliability in low-fault environments, this new problem 

of operating in the presence of many faults presents a new generation of system reliability research challenges 

that requires a significant new research investment.  

At its core a given fault or fault tolerance strategy can affect an application in one of three ways: 

 Time: the application may run more slowly (e.g. the fault itself or the algorithm to tolerate the fault caused a 

degradation in system performance)  

 Energy: the application will use more energy to produce its result (e.g. checkpointing requires some work to 

be re-executed and modular redundancy runs an identical application on multiple processors) 

 Correctness: the application will produce results that have a lower accuracy (e.g. a memory bit-flip may affect 

a numerical algorithm’s convergence properties) 

As such, as part of an integrated fault tolerance strategy we must (i) provide accurate characterization of how an 

application or system performs with respect to these metrics and (ii) to develop ways to both improve this 

performance and allow applications and systems to trade off one aspect, such as correctness, for another, such as 

completion time. 

Challenge 1: Understand and control the complex effects of faults on systems 

Large-scale systems consist of thousands or even millions of software and hardware components that interact in 

complex ways. Faults in one component can propagate through other components in many different ways to 

manifest themselves as a variety of application and system errors. In this context the effects of a given fault may 



be different depending on the context and one part of the same application or system may be more or less 

vulnerable to faults than another. As such, system reliability solutions that treat all faults as equally dangerous and 

all components as equally vulnerable will be highly sub-optimal, giving up significant performance and 

functionality. Further, without the knowledge of how individual system components are affected by faults and how 

those faults travel through the system it becomes very difficult to handle them or identify their root causes. 

Unfortunately, while today there exist techniques to understand the fault properties of individual software and 

hardware components, there exists little work on understanding the effect of faults on entire systems. As we work 

towards developing future generations of cost-effective and productive large-scale systems it is thus critical to 

overcome this limitation. 

 

A simple example of how our lack of understanding hinders our ability to build reliable systems is the effect of bit 

flips on applications running on the BlueGene/L supercomputer, where a 100,000 node machine suffers from one 

L1 cache bit flip every 3-4 hours. Although these flips are detected using a parity code, they can only be corrected 

by running the L1 cache in write-through mode, which guarantees that there is a valid copy of the cache line in L2 

cache. Without knowing anything about the vulnerability of applications to bit flips, the best strategy is to assume 

that every single bit-flip is fatal to the application. As such, BlueGene/L designers chose to handle all such faults at 

the hardware and kernel level by providing users with two options: (i) run using L1 write-through mode, which can 

reduce performance by as much as 50% or (ii) abort the job when a bit-flip is detected, which requires expensive 

checkpoint/restart operations (on this machine a full-system checkpoint takes ~30 minutes). However, these costs 

can be significantly reduced if developers understand their application’s true vulnerability properties. For example, 

Monte-Carlo simulations are insensitive to rare data corruptions, meaning that they require no specialized reaction 

to bit flips. Other applications may be sensitive but may develop efficient strategies for detecting and correcting bit 

flips if they are informed of them. This was the case for the ddcMD code, where performance was improved by 

17% via the use of light-weight checkpointing to correct detected bit flips with no application aborts. Overall, the 

best strategy to employ on a given physical fault varies widely depending on the fault vulnerability of other system 

components and requires the cooperation of multiple components, each of which performs the fault 

detection/correction task that it is best suited for. 

This means that cost-effective reliable computing requires a detailed understanding of the effects of component 

faults on entire systems and cross-component cooperation. 

 

Sub-Goal 1a: Effect of faults on systems - Develop a detailed understanding of how faults propagate through large 

systems and manifest themselves as errors in other components. 

Although component-level reliability has been studied extensively in the context of individual devices, we do not 

currently have a good understanding of how failures of such components affect other portions of the system or 

the applications that run on top of it. The lack of such an understanding makes it difficult to predict the portions of 

systems and applications most vulnerable to failures or to identify the failed system components based on the 

effects of these failures on the system as a whole.  

 

This is critically important because most work in “classical” fault tolerance focuses on completely masking faults 

from higher layers. As companies such as Google have discovered, at extreme scale this approach is not feasible; 

we must recognize that not every fault has equally severe consequences, and focus our efforts on how to 

selectively mask the most dire faults while potentially allowing higher layers of the system to deal explicitly with 

other faults. To do this, we will need to develop composable models of system vulnerability to failures that could 

predict how errors travel through and affect system components and applications. These models would allow us 

to: 



 Design applications and systems to detect and tolerate the most likely or dangerous types of failures, including 

the degree of reliability truly needed from various components 

 Develop tools to quickly identify faulty components, enabling efficient system management 

 Predict many types of failure ahead of time to allow proactive fault tolerance strategies 

 Apply different masking and recovery strategies to different faults depending on their overall impact on job 

completion. 

 

Sub-Goal 1b: Cross-Layer Reliability - Develop tools and frameworks to enable individual components to 

participate in a global fault reliability strategy by defining ways for them to interact and share reliability 

information. 

This problem of sharing the responsibility of system reliability across system layers and components can be 

approached in various ways. One example would be a series of cross-layer reliability interfaces where lower level 

components export information about their internal faults or performance deviations and higher level interfaces 

use this information to either tolerate such problems or propagate them to higher system levels. Another 

approach would be a system-wide monitor that would aggregate information across layers and use statistical 

analysis to coordinate maintenance actions or predict future failures. Such tools are expected to improve system 

performance and maintainability as well as significantly reduce the time to achieve full system stability (currently 

around one year) by identifying marginal components and making it possible to fully utilize the system even before 

all low-level reliability issues have been addressed. 

This infrastructure will have direct implications on the other challenge problems. If the system can export 

information about the correctness of its results, it is possible to develop novel algorithms that take advantage of 

such data to improve their reliability or performance. For example, an algorithm that was informed that a given 

block of memory is unreliable may choose to use it as a cache rather than as primary working space.  

Challenge 2: Enable users to reduce the vulnerability of systems and applications to faults 

In implementing reliable systems and applications developers are faced with the daunting challenge of identifying 

and handling a wide variety of system failures and their many possible manifestations. Although an improved 

understanding of the effect of faults on systems is a critical part of this process, it still leaves developers with a 

very difficult development task. First, many conventional algorithms are brittle in the face of failures and must be 

replaced by new variants that are resilient to failures. For example, physical simulations are frequently very tightly 

coupled, making them very sensitive to any load imbalance or timing variation anywhere in the system (e.g. 

variation due to performance degradation). In particular the POP ocean model slows down by 30%-1600% in the 

presence of such variation. Second, many programming models currently available do not help developers to 

create reliable applications, either because they provide features that make applications more brittle or because 

they are missing features that may simplify the development of reliable applications. As an example of the former, 

the common shared memory programming model reduces application reliability by encouraging frequent fine-

grained accesses to any byte in memory, which makes it expensive to track and detect errors and encourages 

applications to become tightly coupled and therefore sensitive to timing variation. An example of the latter is the 

fact that conventional programming models are missing features such as robust and efficient checkpoint/restart 

capability and integrated invariant specification and checking. 

As reliability becomes an even more critical component of application development, there is a pressing a need 

for novel reliable algorithms and programming models to improve developers’ ability to write reliable 

applications and systems. 



When considering the development of reliable applications, an application’s fault vulnerability can be expressed in 

terms of three components: 

 Temporal Sensitivity – dependence by one part of the application on the amount of time taken by another 

part  

 Interaction Locality – the amount and granularity of interactions between application threads and 

components 

 Correctness Sensitivity – the sensitivity of the algorithm to errors in the computation 

All three types of locality are individually important to the algorithm’s ability to tolerate failures. Applications with 

good temporal sensitivity will be minimally affected by failures that merely result in timing variation and will be 

easy to combine with techniques like checkpoint/restart that convert failures into timing variations. In contrast, 

applications with poor temporal sensitivity will suffer from severe performance degradations due to failures. 

Interaction locality is critical for limiting the amount and granularity of data exchanged by system components. 

Such constraints slow the spread of data corruptions through the application and enable designers to use more 

expensive and accurate fault detection/correction techniques at component interaction sites. Finally, good 

correctness sensitivity reduces the probability that a given failure will corrupt the final application output and 

reduces the severity of such corruptions. 

As a specific example of how algorithmic research can play a role, a natural-language processing application might 

rely on an algorithm that, instead of updating a single centralized model as new training data arrives, is able to 

apply independent updates to separate models and periodically merge or synchronize the models to avoid model 

drift.  Understanding the rate of model drift, or proving bounds on it based on the interval between model 

synchronizations, are problems that can be addressed by new algorithmic research. 

From the programming systems point of view, certain languages and programming models either encourage or 

discourage various types of locality. For example, since Map-Reduce and Linda decouple data producers and 

consumers, they encourage the development of applications with good temporal sensitivity. Similarly, message-

passing and token-passing dataflow encourage spatial locality by forcing users to explicitly identify all their 

communication channels. In contrast, since shared memory allows applications to interact at the granularity of 

individual memory addresses and synchronize using fine-grained primitives, it encourages poor interaction locality 

and temporal sensitivity. Finally, while numerical analysis theory provides numerical applications with ways to 

reduce their sensitivity to data corruptions, the same is not available for many other application domains such as 

databases.  

Challenge 3: Measure the reliability and fault vulnerability aspects of real systems  

While it is clearly important to enable developers to create reliable systems, this will be of limited use unless users 

can verify that a given system actually has the reliability properties they need. For example, if a user is considering 

purchasing hardware that has a certain mean time between failures and some set of common failure modes, they 

need to find a software stack that provides the highest level of productivity (balance of performance, cost and 

reliability) in that environment. Further, once a system is installed, users need mechanisms to empirically measure 

the system’s response to faults to make it possible to effectively manage the system and tune its reliability and 

performance. This capability is of special importance in the context leading edge supercomputing systems that 

take as much as a year to bring up to “production” status. 

The use of reliable systems will require tools to empirically and independently measure system reliability. 



To this end we will need to focus our efforts on developing suites of benchmark applications, reliability metrics and 

physical test environments that can evaluate the reliability of systems and applications with respect to the metrics 

of Time, Energy and Correctness. Such criteria will make it possible to make general statements about to fitness of 

individual systems, system components and applications for specific tasks and specific physical environments. It 

would also allow the industry to track its progress towards providing highly productive operation. 


